沈阳电吹风价格联盟

普通异步电动机与变频电机的区别

只看楼主 收藏 回复
  • - -
楼主

  变频电机一般分为恒转矩专用电动机,用于有反馈矢量控制的带测速装置的专用电动机以及中频电动机等。 在实际应用中我们发现变频电机和普通电机还是有蛮大区别的。

两者的稳定性和使用寿命是不一样的,而且变频电机更省电,它的使用范围更广泛。变频电机的散热系统更强劲;变频电机加强了槽绝缘,一是绝缘材料加强,一是加大槽绝缘的厚度,以提高承受高频电压的水平。同时变频电机增大了电磁负荷。普通电机工作点基本在磁饱和拐点,如果用做变频,易饱和,产生较高的激磁电流,而变频电机在设计时增大了电磁负荷,使磁路不易饱和。


变频电机和普通电机的五大区别

1、电机的效率和温升在变频驱动下,变频电机效率会高10%左右,而温升会小20%左右,尤其是在矢量控制或者直接转矩控制的低频区域。

2、变频电机对于需要频繁启动、频繁调速、频繁制动的场合,要优于普通电动机。

3、在电磁噪声和振动方面,变频电机在变频驱动时较普通电动机有更低的噪音和更小的电磁振动。

4、电动机的绝缘强度问题。由于变频电机专为变频器驱动设计,所以能承受较大的du/dt,所以变频电动机的绝缘强度要高。尤其是在DTC控制模式下,对电动机的绝缘强度是个很大的考验。

5、最主要的区别,还是变频电动机有额外的散热(采用独立的轴流风机强迫通风),在低频、直流制动和一些特殊应用场合下的散热要大大的优于普通的交流异步电动机。

由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。


调频技术对电机的要求主要是三个方面:

  • 绝缘等级;

  • 强制冷却;

  • 转子轴承。


如果超过基频向上调速,还要考虑电机结构的机械强度。

大家都知道一般国产的普通电机大部分只能在AC380V/50HZ的条件下运行,普通电机能降频或升频使用,但范围不能太大,否则电机会发热甚至烧坏。

而变频电机可在其调速范围内可任意调速,电机不会损坏。一般情况下,变频电机以100%额定负载在10%~100%额定速度范围内连续运行,温升不会超过该电机标定容许值。

变频电机的出现主要解决普通电机在低速和高速运行的一些问题,普通电机在低速运行是电机的散热问题和高速时电机轴承的强度问题。

普通电机的散热大多是空气自冷式,电机的散热靠电机端部的两片叶轮的搅动。当电机的转速较低的时候,电机的散热就成了问题。

对于普通电机,变频电机价格不会贵很多,但是优势很明显。变频电机采用“专用变频感应电动机+变频器”的交流调速方式,使机械自动化程度和生产效率大为提高设备小型化、增加舒适性:

  • 具备有软启动功能

  • 采用电磁设计,减少了定子和转子的阻值

  • 适应不同工况条件下的频繁变速

  • 在一定程度上节能


一、变频器对电机的影响

1电动机的效率和温升的问题

不论哪种形式的变频器,在运行中均会产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。

据资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。

高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。

因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。

除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小。

如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%~20%。


2电动机绝缘强度问题

目前中小型变频器,不少是采用PWM的控制方式。

它的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。

另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。


3谐波电磁噪声与震动

普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。

变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。

由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机各构件的固有震动频率。

4电动机对频繁启动、制动的适应能力


由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。


5低转速时的冷却问题

首先,异步电动机的阻抗不尽理想,当电源频率较低时,电源中高次谐波所引起的损耗较大。

其次,普通异步电动机在转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。


二、变频电动机的特点

1电磁设计

对普通异步电动机来说,在设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。

而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不再需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下:

  • 尽可能的减小定子和转子电阻。

    减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗增。

  • 为抑制电流中的高次谐波,需适当增加电动机的电感。

    但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。

变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和;二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。


2结构设计

在结构设计时,主要也是考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响。一般注意以下问题:

  • 绝缘等级,一般为F级或更高,加强对地绝缘和线匝绝缘强度,特别要考虑绝缘耐冲击电压的能力。

  • 对电机的振动、噪声问题,要充分考虑电动机构件及整体的刚性,尽力提高其固有频率,以避开与各次力波产生共振现象。

  • 冷却方式:一般采用强迫通风冷却,即主电机散热风扇采用独立的电机驱动。

  • 防止轴电流措施,对容量超过160kW电动机应采用轴承绝缘措施。主要是易产生磁路不对称,也会产生轴电流,当其它高频分量所产生的电流结合一起作用时,轴电流将大为增加,从而导致轴承损坏,所以一般要采取绝缘措施。

  • 对恒功率变频电动机,当转速超过3000/min时,应采用耐高温的特殊润滑脂,以补偿轴承的温度升高。


三、同步电动机

1特点

功率因数超前,一般额定功率因数为0.9,有利于改善电网的功率因数,增加电网容量。

运行稳定性高,当电网电压突然下降到额定值的80%时,其励磁系统一般能自动调节实行强行励磁,保证电动机的运行稳定。

过载能力比相应的异步电动机大。

运行效率高,尤其是低速异步电动机。


2启动方式

异步启动法。

同步电动机多数在转子上装有类似于异步电机笼式绕组的启动绕组。在励磁回路串接约为励磁绕组电阻值10倍的附加电阻来构成闭合电路,把同步电动机的定子直接接入电网,使之按异步电动机启动,当转速达到亚同步转速(95%)时,再切除附加电阻。

变频启动。

用变频器启动,不在赘述。


3应用

做过油田节电的师傅都知道,油田的抽油机电机,由于要求的启动转矩大,工程师设计时一般将电机设计的很大,这就出现“大马拉小车”现象,如:55kW的抽油机电机,平衡块基本调好后,其实际有功一般在十几个千瓦,有时还小。

有人曾做过这样的改造,将抽油机55kW异步电动机改为22kW同步电机,后用变频器控制,当然也可以根据排液量或别的信号进行自动控制,节电率可达40%。


因此,异步电动机、同步电动机、变频电动机三者各有特点,主要看所控制的工况环境,当然还要根据工程成本,能用异步电机尽量用异步电动机。

文章来源:《传动在线》如涉及版权,版权属原作者。 

CMZ驰马拉链的营销及技术团队,竭诚为您服务!



举报 | 1楼 回复

友情链接